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Visual perceptual learning models, as constrained by orientation and location specificities, propose that learning either reflects changes
in V1 neuronal tuning or reweighting specific V1 inputs in either the visual cortex or higher areas. Here we demonstrate that, with a
training-plus-exposure procedure, in which observers are trained at one orientation and either simultaneously or subsequently passively
exposed to a second transfer orientation, perceptual learning can completely transfer to the second orientation in tasks known to be
orientation-specific. However, transfer fails if exposure precedes the training. These results challenge the existing specific perceptual
learning models by suggesting a more general perceptual learning process. We propose a rule-based learning model to explain perceptual
learning and its specificity and transfer. In this model, a decision unit in high-level brain areas learns the rules of reweighting the V1
inputs through training. However, these rules cannot be applied to a new orientation/location because the decision unit cannot function-
ally connect to the new V1 inputs that are unattended or even suppressed after training at a different orientation/location, which leads to
specificity. Repeated orientation exposure or location training reactivates these inputs to establish the functional connections and enable
the transfer of learning.

Introduction
Visual perceptual learning is known to be orientation and retinal
location specific (Karni and Sagi, 1991; Fahle, 1994; Ahissar and
Hochstein, 1997), placing strong constraints on many perceptual
learning models by restricting the site of learning to the retino-
topic and orientation-selective visual cortex. Various models
propose that perceptual learning may result from training-
induced modifications of recurrent horizontal connections in V1
that lead to sharpened neuronal tuning (Adini et al., 2002; Teich
and Qian, 2003; Zhaoping et al., 2003) or from improved readout
of V1 signals through response reweighting within the visual cor-
tex (Poggio et al., 1992; Dosher and Lu, 1998). Alternatively,
Mollon and Danilova (1996) hypothesized that learning occurs at
a central site, but what is learned is the receptor arrangement
along a certain orientation or the local retinal image properties,
which still predicts orientation and location specificity of learn-
ing. The concept of central learning gains support from new
single-unit evidence that motion-direction learning correlates
with neural activities at a nonsensory decision area, the lateral
intraparietal area (LIP), not the motion selective middle tempo-
ral area (MT) (Law and Gold, 2008), which is modeled as a high-
level decision unit refining its functional connections to sensory
neurons responding to a specific motion direction through re-

sponse reweighting, which again constrains the model learning to
be motion-direction specific (Law and Gold, 2009).

However, orientation and location specificities may not be
intrinsic properties of perceptual learning. Recently, we demon-
strated that location specificity can be abolished by a feature and
location double-training procedure (Xiao et al., 2008). For exam-
ple, location-specific contrast discrimination learning can be ren-
dered completely transferrable to a new location if the new
location is trained with an irrelevant orientation-discrimination
task. Although these results support the central learning hypoth-
esis (Mollon and Danilova, 1996), the complete location transfer
of learning indicates that learning does not simply reflect changes
in functional connections between the decision unit and specific
sensory neurons. Rather, some more general learning process
must have been activated that can be applied to sensory inputs
from a different neuronal population at a different retinal
location.

However, a central and general learning process may also pre-
dict orientation nonspecificity in perceptual learning, which is
in contradiction to the extant data. To resolve this contradic-
tion, in this study we designed a training-plus-exposure (TPE)
procedure to demonstrate complete transfer of learning across
orientations. Based on the new evidence, we propose a rule-
based learning model to explain perceptual learning and its
specificity and transfer.

Materials and Methods
Observers and apparatus. Fifty-seven observers with normal or corrected-
to-normal vision participated in this study. All were new to psychophys-
ical experiments and unaware of the purposes of the study. This research
was approved by the Beijing Normal University Institutional Review
Board, and informed consent was obtained from each observer.
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The stimuli were generated by a PC-based WinVis program (Neuro-
metrics Institute). Gabor stimuli were presented on a 21-inch Sony G520
color monitor (1024 � 768 pixels; 0.37 � 0.37 mm per pixel; 120 Hz
frame rate; 50 cd/m 2 mean luminance), and the bar array stimuli were
presented on a 21-inch Dell P1130 color monitor (1024 � 768 pixel;
0.37 � 0.37 mm per pixel; 150 Hz frame rate; 41 cd/m 2 mean lumi-
nance). Luminance of the monitors was linearized by an 8-bit look-up
table. A chin-and-head rest helped stabilize the head of the observer.
Experiments were run in a dimly lit room. Viewing was binocular.

Stimuli. The Gabor stimuli (Gaussian windowed sinusoidal gratings,
with spatial frequency � 6 cycles per degree, SD � 0.17°, contrast � 0.47,
and phase randomized for every presentation in the orientation discrim-
ination task) (Fig. 1a), presented on a mean luminance background, were
used in orientation and contrast discrimination tasks (Figs. 1, 2). The
stimulus was viewed at a distance of 4 m through a circular opening
(diameter � 17°) of a black piece of cardboard that covered the entire
monitor screen. This control prevented observers from using external
references like monitor edges to determine the orientations of the
stimuli.

The bar arrays (Fig. 3a) used in the feature detection task were similar
to those used by Ahissar and Hochstein (1997). Specifically, the 7 � 7
array of white bars (22.2 �1.3 arcmin each) with an interbar distance of
42.5 � 3.9 arcmin was presented on a black monitor screen and was
viewed at a distance of 2 m. The target was an oddly oriented bar placed
at either the second or the sixth bar location of the middle row of the
array (Fig. 3a, red circles), which differed from other uniformly oriented
background bars by 16°. The stimulus array was followed, at various
stimulus onset asynchronies (SOAs), by a mask that was also a 7 � 7
array, with each element containing one pair of white bars oriented at the
target and background orientations, and the other pair rotated by 90°.

Procedure. Contrast- and orientation-discrimination thresholds were
measured with a temporal two-alternative forced choice (2AFC) staircase
procedure. In each trial, the reference and test (reference � �contrast or
�orientation) were separately presented in two stimulus intervals (92 ms
each) in a random order separated by a 600 ms interstimulus interval.
The observers judged in which stimulus interval the stimulus had a more
clockwise orientation (orientation discrimination) or a higher contrast
(contrast discrimination). The fixation cross was flashed for 200 ms and
disappeared 200 ms before the onset of the first stimulus interval. The
feature detection thresholds were measured with a single interval yes/no
staircase procedure. Each trial started with a fixation, then the observer
pressed the “ready” key and the stimulus was presented for 1 frame (6.7
ms), which was followed by a mask with a variable SOA. The observers
judged whether the stimulus array contained an odd element (50% tri-
als). Auditory feedback was given on incorrect responses in all tasks.

The staircases followed the three-down, one-up staircase rule,
which resulted in a 79.4% convergence rate. The step size of the
staircases was 0.05 log units. Each staircase consisted of four prelim-
inary reversals and six experimental reversals. The geometric mean of
the experimental reversals was taken as the threshold for each stair-
case run.

Results
Orientation specificity and transfer in orientation learning
We first replicated orientation specificity in a foveal orientation
discrimination task. Six observers in the initial training phase
practiced orientation discrimination (i.e., “Which interval con-
tains a more clockwise orientation stimulus in a two-interval
trial?”) for a Gabor stimulus (Fig. 1a) at one orientation (36° or
126°, denoted as �ori_ori1, meaning orientation discrimination
at orientation 1). After seven 2 h sessions of practice on different
days, significant learning was evident [mean percent improve-
ment (MPI) � 32.3 � 3.2%, p � 0.001, one-tailed paired t test]
(Fig. 1b, left), but orientation discrimination for the same Gabor
was not significantly improved at an untrained orthogonal ori-
entation (�ori_ori2, MPI � 6.9 � 3.8%, p � 0.067).

Based on our previous work (Xiao et al., 2008; Zhang et al.,
2010), we hypothesized that learning takes place at a high-level

decision stage beyond the retinotopic and orientation-selective
visual areas. We reasoned that the orientation specificity might
result because the high-level decision unit, which has learned at
the trained orientation, cannot functionally connect to V1 inputs
representing the untrained transfer orientation to transfer learn-
ing. These new V1 inputs are unattended and likely suppressed by
the decision unit after attention has been directed to the trained
orientation (Treue, 2001; Vidnyánszky and Sohn, 2005; Gál et al.,
2009). We further hypothesized that the unattended and sup-
pressed V1 inputs could be reactivated by repeated exposure of
the transfer orientation, so that the decision unit and new V1
inputs can be functionally connected to enable learning transfer.

To test this hypothesis, we designed a TPE procedure in which
an observer is trained at one orientation and simultaneously or at
later time passively exposed to the transfer orientation while per-
forming an irrelevant task. Specifically, following a successive
TPE procedure, several weeks later the same six observers started
the second exposure phase in which they were exposed to orien-
tations around the transfer orientation (ori2 � 10°) in a contrast
discrimination task (�con_ori2). The purpose of having the ob-
servers perform demanding near-threshold contrast discrimination
around ori2 was to control attention (Ahissar and Hochstein,
1993), i.e., to divert attention away from the stimulus orientation.
As our control condition (Fig. 1d) shows, contrast discrimination
training alone had little impact on orientation discrimination
performance, so that any potential improvement of orientation
discrimination at ori2 after the exposure phase was not learned at
ori2, but transferred from ori1. The �10° orientation jitter was
used to stimulate neurons responding to the reference orienta-
tion and to-be-discriminated orientations. After training con-
trast discrimination performance was significantly improved
(�con_ori2; MPI � 25.3 � 4.3%, p � 0.001) (Fig. 1b, right).
Importantly, orientation discrimination for the untrained ori2
(�ori_ori2) was also improved (MPI � 21.8 � 5.8%, p � 0.007).
The overall MPI of �ori_ori2 after the TPE procedure was 28.0 �
3.8% ( p � 0.001), not significantly different from that of trained
�ori_ori1 ( p � 0.36), suggesting complete transfer of orienta-
tion learning from ori1 to ori2. The successive TPE results are
summarized in the left section of Figure 1e.

We used a transfer index (TI) to compare the transfer of learn-
ing among different training conditions. TI � MPItransfer/MPI-

trained. TI � 1 would indicate complete transfer and TI � 0 would
indicate zero transfer. For the above TPE procedure, TI was 0.19
after phase I training, which increased significantly to 0.90 after
phase II orientation exposure ( p � 0.013).

To confirm the above TPE results, six new observers com-
pleted a simultaneous TPE procedure in which they practiced
�ori_ori1 and �con_ori2 simultaneously in alternating blocks of
trials (staircases). During �con_ori2 training, they were exposed
to orientations around the transfer orientation (ori2 � 10°). This
TPE procedure significantly improved performance at �ori_ori1
(MPI � 37.2 � 8.8%, p � 0.004) (Fig. 1c,e) and �con_ori2
(MPI � 17.7 � 6.4%, p � 0.020). Again, orientation discrimi-
nation at untrained ori2 (�ori_ori2) was also improved (MPI �
31.6 � 6.3%, p � 0.002), which was not significantly different
from the improvement at the trained �ori_ori1 ( p � 0.18), again
suggesting a complete transfer of orientation learning (TI �
1.16). These simultaneous TPE results are summarized in the
middle section of Figure 1e.

A control experiment excluded the possibility that improved
orientation discrimination at �ori_ori2 resulted from contrast
training around ori2 alone. Contrast discrimination training
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around ori2 (�con_ori2; with � 10° jittering of the Gabor orien-
tation) significantly improved contrast performance in six new
observers (MPI � 26.9 � 2.1%, p � 0.001) (Fig. 1d,e), but this
contrast learning had no significant impact on orientation dis-
crimination at the same orientation (�ori_ori2; MPI � 7.7 �
5.8%, p � 0.083).

Interestingly, a reversed TPE procedure (i.e., ori1 training af-
ter, rather than before, ori2 exposure) does not generate the same
transfer of learning. The same observers in the control experi-
ment continued to practice orientation discrimination at ori1 for
five more sessions (�ori_ori1; MPI � 22.2 � 5.1%, p � 0.004)
(Fig. 1d,e). However, this time orientation learning did not trans-
fer much to the untrained �ori_ori2 (MPI � 5.0 � 2.6%, p �
0.053) (Fig. 1d,e). These reversed TPE results are summarized in
the right section of Figure 1e. We will return to this interesting
result in Discussion.

Remarkably, after this reversed TPE procedure, untrained
contrast discrimination at ori1 was also improved (�con_ori1;
MPI � 22.6 � 3.6%, p � 0.001) (Fig. 1d, solid green circle with
black outline) as much as learning at trained �con_ori2 ( p �
0.13), assuming that the pretest contrast discrimination thresh-
olds were similar at the two orientations. Here the reversed TPE
procedure became the regular successive TPE procedure regard-
ing contrast learning. This transfer seems to point to the general-

ity of the TPE training effects. However, it is not clear whether the
transfer of learning to �con_ori1 resulted from the successive TPE
training first at �con_ori2 and then at �ori_ori1, because we do not
know how much learning at trained �con_ori2 alone had trans-
ferred to �con_ori1. This issue of generality is addressed in Figure 2.

We also examined whether the transfer of learning enabled by
the TPE procedure was specific to the transfer orientation. Five
new observers were trained with the same simultaneous TPE pro-
cedure and changes in orientation discrimination thresholds
were measured at 0°, 15°, 30°, 45°, and 60° away from the transfer
orientation (36° or 126°) where contrast discrimination was
trained. To reduce the potential impact of measuring thresholds
at one orientation on the performance of neighboring orienta-
tions, the neighboring orientations were placed either clockwise
or anticlockwise from ori2. As a comparison, another baseline
group of five new observers were trained with orientation dis-
crimination only and changes of orientation performance were
measured at similar orientation deviations from the transfer ori-
entation. We found that the transfer of learning following the
TPE procedure was strongest at the exposed transfer orientation
(Fig. 1f). Beyond a 30° deviation from the transfer orientation,
there were no significant performance differences between the
baseline and TPE groups.

Figure 1. Perceptual learning of orientation discrimination and its transfer to a second orientation studied with TPE procedures. a, The stimulus configuration for orientation discrimination in
which one interval contained a more clockwise Gabor stimulus. b, Successive TPE procedure. Phase I (sessions 1–7): orientation discrimination was practiced at one orientation (36°/126°,�ori_ori1,
blue diamonds; orientation thresholds indicated by the left ordinate) and the transfer of learning was tested at an untrained orthogonal orientation (126°/36°, �ori_ori2, the left two red triangles),
which replicated typical orientation specificity in orientation discrimination learning. Phase II (sessions 8 –14): the same observers were later exposed to the transfer orientation ori2 in a
contrast-discrimination learning task around the same transfer orientation (126°/36°, �con_ori2, green circles; contrast thresholds indicated by the right ordinate) and the transfer of orientation
learning to ori2 was remeasured (126°/36°, �ori_ori2, the right two red triangles). Thresholds are averaged over all observers’ data; error bars represent one SEM. The left and right ordinates have
the same scale factor in log units. c, Simultaneous TPE procedure: orientation discrimination was practiced at ori1 (�ori_ori1, blue diamonds) while the transfer orientation ori2 was exposed in a
contrast-discrimination learning task (�con_ori2, green circles) and the transfer of learning was tested for orientation discrimination at ori2 (�ori_ori2; red triangles). d, Reversed TPE procedure.
Phase I (sessions 1–7): contrast discrimination was practiced around ori2 (�con_ori2; open green circles) and the change of orientation discrimination performance was measured at ori2
(�ori_ori2; left two red triangles). Phase II (sessions 8 –14): orientation discrimination was practiced at ori1 (�ori_ori1; blue diamonds) and the transfer of learning was measured at ori2
(�ori_ori2; right two red triangles). The untrained contrast threshold at ori1 (�con_ori1) was also measured after the TPE procedure (solid green circle with black outline). e, A summary of learning
and transfer. Left, Successive TPE in b; middle, simultaneous TPE in c; right, reversed TPE in d. f, The average posttraining/pretraining threshold ratios at various orientation deviations from the
transfer orientations (36°/126°) with conventional (red circles, fitted with a Gaussian peaked at 0° orientation deviation) and TPE training (blue circles, fitted with the difference of two identical
Gaussians peaked at 0° and 90° orientation deviations).
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Orientation specificity and transfer in contrast learning
To better test the generality of our results, we used the TPE pro-
cedure in a new contrast-discrimination learning task to demon-
strate complete transfer of contrast learning across orientations
(Fig. 2). The baseline group of six observers practiced contrast
discrimination for a vertical or horizontal Gabor (i.e., “Which
interval contained a higher contrast stimulus?” in a two-interval
trial) in six to seven 2 h sessions on different days, which produced
significant learning at the trained orientation (�con_ori1; MPI �
29.1 � 4.1%, p � 0.001) (Fig. 2b,e). The contrast learning partially
transferred to the untrained orthogonal orientation (�con_ori2;
MPI � 11.6 � 3.0%, p � 0.006), but the change of performance at
�con_ori2 was less than that at trained �con_ori1 ( p � 0.020).

A TPE group of six new observers practiced contrast discrim-
ination at ori1 (�con_ori1), as well as orientation discrimination
at ori2 (�ori_ori2, the exposure condition) in alternating stair-
cases. Here the orientation discrimination task allowed orienta-
tion exposure at ori2, but the stimulus contrast was irrelevant and
unattended as attention was diverted to the orientation judg-
ment. Again, this measure was to ensure that any improved con-
trast discrimination at ori2 was not learned at ori2, but
transferred from ori1. The Gabor contrast in the orientation dis-
crimination task was jittered from trial to trial (from 30% to 67%,
�1 octave from the 0.47 reference contrast) to activate neuronal
responses to the reference contrast and the nearby to-be-
discriminated contrasts at ori2. After this TPE procedure, both

contrast discrimination at ori1 (�con_ori1) and orientation dis-
crimination at ori2 (�ori_ori2) were significantly improved
(MPI � 26.5 � 7.5% and 30.3 � 4.9%, p � 0.008 and p � 0.001,
respectively) (Fig. 2c,e). So was contrast discrimination at ori2
(�con_ori2) by an equivalent amount (MPI � 31.8 � 4.9%, p �
0.001), suggesting that the TPE procedure enabled complete
transfer of contrast learning across orientations.

A control experiment ruled out the possibility that orientation
training (with contrast jittering) at the transfer orientation
(�ori_ori2; MPI � 30.5 � 4.2%, p � 0.001) (Fig. 2d,e) alone
improved contrast discrimination at the same orientation
(�con_ori2; MPI � 9.4 � 8.0%, p � 0.15). A comparison of the
transfer index indicated that the transfer of learning with the TPE
condition (TI � 1.70) (Fig. 2c) was significantly more than the
transfer with the baseline (TI � 0.49) (Fig. 2b) and control (TI �
0.25) (Fig. 2d) conditions ( p � 0.010, one-way ANOVA).

Orientation specificity and transfer in feature
detection learning
Next, we studied whether the TPE procedure could override ori-
entation specificity in a feature-detection learning task originally
used by Ahissar and Hochstein (1997, 2004). In this task, observ-
ers learn to detect an oddly oriented target bar from other uni-
formly oriented background bars (Fig. 3a, far left), all of which
are flashed simultaneously and briefly, and are then followed by a
mask (Fig. 3a, third from left) at various SOAs. The transfer of

Figure 2. Orientation specificity in contrast learning studied with conventional and TPE procedures. a, The stimulus configuration for contrast discrimination in which one interval contains a
higher contrast Gabor stimulus. b, Conventional training. Contrast discrimination for a vertical or horizontal Gabor was practiced (�con_ori1; green circles) and the transfer of learning was tested
at an untrained orthogonal orientation (�con_ori2; red triangles). c, TPE training. Contrast discrimination was practiced at ori1 (�con_ori1; green circles; contrast thresholds indicated by the left
ordinate) and orientation discrimination (the exposure condition) was practiced at ori2 (�ori_ori2; blue diamonds; orientation thresholds indicated by the right ordinate) in alternating staircases,
and the transfer of learning for contrast discrimination was tested at ori2 (�con_ori2; red triangles). d, Control. Orientation discrimination was practiced at the transfer orientation (�ori_ori2; blue
diamonds) and its impact on contrast discrimination was tested at the same orientation (�con_ori2; red triangles). e, A summary of learning and transfer. Left, Conventional training in b; middle,
TPE training in c; right, control in d.
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learning is tested when the target and the background orientations
are swapped (Fig. 3a, second from left). Ahissar and Hochstein
(1997) reported that perceptual learning transfers nearly com-
pletely to the swapped target-background orientations only if the
target-background orientation difference is large (i.e., 30°, an easy
task made difficult by the brief duration). If the orientation differ-
ence is small (e.g., 16°, a hard task), learning does not transfer much.
This result provided the core evidence for Ahissar and Hochstein’s
influential reverse-hierarchy theory of perceptual learning (Ahissar
and Hochstein, 1997, 2004), which asserts that easy-task learning can
be accomplished by cognitive mechanisms at a high level of the
information-processing hierarchy, but hard-task learning requires
modification of the stimulus representation in early visual areas at
the bottom of the hierarchy.

We first successfully replicated Ahissar and Hochstein’s hard-
task learning data in seven new observers by showing that the very
substantial learning at the trained target-background orienta-
tions (MPI � 61.4 � 3.9%, p � 0.001, after four sessions of
training) did not transfer much to the swapped target-
background orientations (MPI � 19.7 � 9.5%, p � 0.041) (Fig.

3a, far right panel). As in Ahissar and
Hochstein’s experiment, there was no pre-
test at the swapped orientations. Therefore,
the pretraining threshold at the trained ori-
entations was used to calculate the MPI at
the swapped orientations. We then had an-
other five observers undergo the TPE
procedure, in which the original feature-
detection training alternated in blocked tri-
als with repeated exposure to the swapped-
background orientation at a fixed stimulus-
mask SOA (106.7 ms, which was near the
average pretraining threshold). In the expo-
sure condition, the observers judged
whether the stimuli were bars (uniformly
oriented at the swapped-background orien-
tation without the odd element presented
on 80% trials) (Fig. 3b, left) or circles (20%
trials) (Fig. 3b, middle) in each 60-trial
block. This time, feature-detection learning
(MPI�43.9�3.9%, p�0.001) transferred
completely to the swapped orientations
(MPI � 44.7 � 4.8%, p � 0.001) (Fig. 3b,
right). The average TI was significantly
higher with the TPE condition (TI � 1.04)
than with the baseline condition (TI � 0.32)
( p � 0.002, one-tailed parametric t test).

Up to 8 weeks after the initial training,
five of the seven observers who performed
baseline training in Figure 3a returned
and were exposed to the swapped-
background orientation (judging bars or
circles) for four sessions before the odd-
bar detection performance at the swapped
orientations was remeasured (Fig. 3c). For
these observers, the original baseline fea-
ture detection training led to an insignifi-
cant performance improvement (MPI �
9.6 � 6.9%; p � 0.12) at the swapped ori-
entations (Fig. 3c, left red triangle). Sub-
sequent repeated exposure to the
swapped-background orientation signifi-
cantly improved performance at the

swapped orientations by another 33.9 � 5.3% ( p � 0.002) by the
final (10th) session (Fig. 3c, right red triangle). The overall MPI
was 56.2 � 3.4% ( p � 0.001) with the trained orientations and
40.3 � 7.0% ( p � 0.004) with the swapped orientations, which
did not differ significantly ( p � 0.12).

Discussion
Existing models of perceptual learning predicting specificity,
not transfer
The demonstration of complete transfer of perceptual learning
across orientations (Figs. 1–3) and retinal locations (Xiao et al., 2008;
Zhang et al., 2010) challenges the existing models of perceptual
learning. First, the complete learning transfer contradicts V1-based
models (Adini et al., 2002; Teich and Qian, 2003; Zhaoping et al.,
2003) as well as reweighting models that place the decision unit in
the visual cortex at a post-V1 stage (Poggio et al., 1992; Dosher
and Lu, 1998). These models predict orientation and location
specificities, but not transfer, because of the retinotopy and ori-
entation selectivity of the visual cortex. Second, the complete
learning transfer also contradicts all existing reweighting models,

Figure 3. The effect of TPE training on transfer of feature detection learning across orientations. a, Left three panels, Stimuli at
trained target-distracter orientations (46° vs 30°), at untrained target-distracter swapped orientations (30° vs 46°), and the mask.
The odd element (target) could appear at one of two positions (indicated by red circles that were not present in the actual stimuli).
Right, Feature detection was practiced at trained target-distracter orientations (blue diamonds) and the transfer of learning was
tested at swapped orientations (red triangles). The mean threshold over the first six staircase runs was taken as the baseline and is
indicated by the 0th session. b, Left and middle, Uniform stimulus array containing swapped-background orientation only or
containing circles for the bars or circles judgment (the exposure condition). Right, Feature detection was practiced at trained
target-distracter orientations (blue diamonds) and the swapped background orientation was repeatedly exposed (bars or circles)
in alternating blocks of trials. The transfer of learning was tested at swapped orientations (red triangles). c, The effects of later
repeated exposure to the swapped-background orientation after baseline training in five observers from a. d, A summary of
learning and transfer. Left, Baseline training in a; middle, simultaneous TPE training in b; right, successive TPE training in c, in
which the performance improvement was calculated by comparing the thresholds at the final 10th session and the 0th session.
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even if the decision unit is placed in nonretinotopic high brain
areas (Mollon and Danilova, 1996; Law and Gold, 2009). All
reweighting models assume training improved readout of visual
inputs from a specific population of neurons, which also predicts
orientation and location specificities, but not transfer. The trans-
fer results also run counter to the recent claim that orientation
specificity results from response reweighting within the same ori-
entation channel (Jeter et al., 2009). Again, within-channel re-
weighting would not predict complete transfer of learning to a
new orientation.

Third, the complete learning transfer, especially with the
feature detection task (Fig. 3), also challenges the influential
reverse-hierarchy theory (Ahissar and Hochstein, 1997, 2004).
Reverse-hierarchy theory postulates that high-level easy-task
learning directs the early visual cortex to modify the stimulus
representations to achieve low-level and nontransferrable hard-
task learning. However, the complete transfer of the same hard-
task learning after the TPE procedure (Fig. 3) demonstrates that
both easy- and hard-task learning can be accomplished by a single
architecture (Dosher and Lu, 2007) in high-level brain areas.

Finally, the successive TPE training data (Figs. 1b, 3c), in which
the training and exposure phases were often separated by several
weeks, rule out the possibility that the transfer of learning could
result from temporal associations between the trained orientation
and the exposed transfer orientation. Similar associations have been
used to explain task irrelevant perceptual learning under signifi-
cantly different stimulus conditions (Seitz and Watanabe, 2005).

A rule-based learning model
Our results suggest that what is really learned in perceptual learn-
ing are the heuristics or rules for performing a visual task effi-
ciently. To overcome the limitations of the previous models, we
propose a rule-based learning model to explain perceptual learn-
ing and its specificity and transfer.

Rule-based learning
Existing reweighting models, as constrained by the learning spec-
ificities, focus on the weight retuning of specific V1 inputs. How-
ever, the transfer of learning suggests that the decision unit has
deduced the rules of reweighting the inputs from learning a task
at a specific orientation or retinal location. For example, assum-
ing that the V1 inputs for a stimulus orientation are Gaussian
distributed with the most relevant (strongest) inputs at the center
of the distribution, training would enable the decision unit to
form a set of algorithms for assigning a weight to each input on
the basis of its relative distance from the mean. These algorithms
or rules are independent of the absolute orientations or locations
that the V1 inputs represent, so they are potentially applicable to
other orientations and retinal locations.

Rule application: specificity and transfer
Our results demonstrate that the transfer of learning requires two
things: learning the rules for the task and exposure of the new
features to which the learned rules must be applied. The applica-
tion of learned rules to a new orientation or retinal location is not
automatic, or learning would always transfer. When training is at
a specific orientation or retinal location, V1 inputs representing
other untrained orientations or retinal locations are unattended
and likely suppressed (Treue, 2001; Vidnyánszky and Sohn, 2005;
Gál et al., 2009), so that the decision unit cannot functionally
connect to these V1 inputs to apply the learned rules. Orientation
exposure (Figs. 1–3) or location training (Xiao et al., 2008) may
establish such connections to enable learning transfer by reacti-

vating the unattended or suppressed V1 inputs, either during
training in separate blocks of trials or after training.

A key finding is that there is no transfer of learning if the order of
the TPE procedure is reversed (Fig. 1d), indicating that the order is
crucial. In order for transfer to occur, training on the orientation task
had to precede exposure to the new orientation, suggesting that mere
exposure of the transfer orientation does not lead to the transfer of
learning. Rather, the rule learning may require substantial experi-
ence with a near-threshold and demanding task.

We note that there is much to be done to flesh out our model. For
example, we need to know how analogous in terms of context and
task parameters the second task needs to be to the first in order for
transfer to occur. We are also currently investigating how much
exposure is needed for reactivation. In one study, we found that
�200 trials of pretest in the periphery enables complete transfer of
foveal orientation learning to the periphery (Zhang et al., 2010),
indicating that this process could be very fast for certain tasks. With-
out the pretest, there is no transfer (Schoups et al., 1995).
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